Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
Bioessays ; : e2400008, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697917

ABSTRACT

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.

2.
Cancer Med ; 13(3): e6860, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38366800

ABSTRACT

The immune response-gut microbiota interaction is implicated in various human diseases, including cancer. Identifying the link between the gut microbiota and systemic inflammatory markers and their association with cancer will be important for our understanding of cancer etiology. The current study was performed on 8090 participants from the population-based Rotterdam study. We found a significant association (false discovery rate [FDR] ≤0.05) between lymphocytes and three gut microbial taxa, namely the family Streptococcaceae, genus Streptococcus, and order Lactobacillales. In addition, we identified 95 gut microbial taxa that were associated with inflammatory markers (p < 0.05). Analyzing the cancer data, we observed a significant association between higher systemic immune-inflammation index (SII) levels at baseline (hazard ratio (HR): 1.65 [95% confidence interval (CI); 1.10-2.46, p ≤ 0.05]) and a higher count of lymphocytes (HR: 1.38 [95% CI: 1.15-1.65, p ≤ 0.05]) and granulocytes (HR: 1.69 [95% CI: 1.40-2.03, p ≤ 0.05]) with increased risk of lung cancer after adjusting for age, sex, body mass index (BMI), and study cohort. This association was lost for SII and lymphocytes after additional adjustment for smoking (SII = HR:1.46 [95% CI: 0.96-2.22, p = 0.07] and lymphocytes = HR: 1.19 [95% CI: 0.97-1.46, p = 0.08]). In the stratified analysis, higher count of lymphocyte and granulocytes at baseline were associated with an increased risk of lung cancer in smokers after adjusting for age, sex, BMI, and study cohort (HR: 1.33 [95% CI: 1.09-1.62, p ≤0.05] and HR: 1.57 [95% CI: 1.28-1.92, p ≤0.05], respectively). Our study revealed a positive association between gut microbiota, higher SII levels, and higher lymphocyte and granulocyte counts, with an increased risk of developing lung cancer.


Subject(s)
Gastrointestinal Microbiome , Lung Neoplasms , Humans , Incidence , Body Mass Index , Inflammation/epidemiology , Blood Cells
3.
Eur Heart J Digit Health ; 4(6): 444-454, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045440

ABSTRACT

Aims: Risk assessment tools are needed for timely identification of patients with heart failure (HF) with reduced ejection fraction (HFrEF) who are at high risk of adverse events. In this study, we aim to derive a small set out of 4210 repeatedly measured proteins, which, along with clinical characteristics and established biomarkers, carry optimal prognostic capacity for adverse events, in patients with HFrEF. Methods and results: In 382 patients, we performed repeated blood sampling (median follow-up: 2.1 years) and applied an aptamer-based multiplex proteomic approach. We used machine learning to select the optimal set of predictors for the primary endpoint (PEP: composite of cardiovascular death, heart transplantation, left ventricular assist device implantation, and HF hospitalization). The association between repeated measures of selected proteins and PEP was investigated by multivariable joint models. Internal validation (cross-validated c-index) and external validation (Henry Ford HF PharmacoGenomic Registry cohort) were performed. Nine proteins were selected in addition to the MAGGIC risk score, N-terminal pro-hormone B-type natriuretic peptide, and troponin T: suppression of tumourigenicity 2, tryptophanyl-tRNA synthetase cytoplasmic, histone H2A Type 3, angiotensinogen, deltex-1, thrombospondin-4, ADAMTS-like protein 2, anthrax toxin receptor 1, and cathepsin D. N-terminal pro-hormone B-type natriuretic peptide and angiotensinogen showed the strongest associations [hazard ratio (95% confidence interval): 1.96 (1.17-3.40) and 0.66 (0.49-0.88), respectively]. The multivariable model yielded a c-index of 0.85 upon internal validation and c-indices up to 0.80 upon external validation. The c-index was higher than that of a model containing established risk factors (P = 0.021). Conclusion: Nine serially measured proteins captured the most essential prognostic information for the occurrence of adverse events in patients with HFrEF, and provided incremental value for HF prognostication beyond established risk factors. These proteins could be used for dynamic, individual risk assessment in a prospective setting. These findings also illustrate the potential value of relatively 'novel' biomarkers for prognostication. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT01851538?term=nCT01851538&draw=2&rank=1 24.

4.
Front Mol Neurosci ; 16: 1253040, 2023.
Article in English | MEDLINE | ID: mdl-38025266

ABSTRACT

Purpose: Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are neurotropic human alphaherpesviruses endemic worldwide. Upon primary infection, both viruses establish lifelong latency in neurons and reactivate intermittently to cause a variety of mild to severe diseases. Acute retinal necrosis (ARN) is a rare, sight-threatening eye disease induced by ocular VZV or HSV infection. The virus and host factors involved in ARN pathogenesis remain incompletely described. We hypothesize an underlying genetic defect in at least part of ARN cases. Methods: We collected blood from 17 patients with HSV-or VZV-induced ARN, isolated DNA and performed Whole Exome Sequencing by Illumina followed by analysis in Varseq with criteria of CADD score > 15 and frequency in GnomAD < 0.1% combined with biological filters. Gene modifications relative to healthy control genomes were filtered according to high quality and read-depth, low frequency, high deleteriousness predictions and biological relevance. Results: We identified a total of 50 potentially disease-causing genetic variants, including missense, frameshift and splice site variants and on in-frame deletion in 16 of the 17 patients. The vast majority of these genes are involved in innate immunity, followed by adaptive immunity, autophagy, and apoptosis; in several instances variants within a given gene or pathway was identified in several patients. Discussion: We propose that the identified variants may contribute to insufficient viral control and increased necrosis ocular disease presentation in the patients and serve as a knowledge base and starting point for the development of improved diagnostic, prophylactic, and therapeutic applications.

6.
PLoS One ; 18(9): e0290013, 2023.
Article in English | MEDLINE | ID: mdl-37672513

ABSTRACT

Colour agnosia is a disorder that impairs colour knowledge (naming, recognition) despite intact colour perception. Previously, we have identified the first and only-known family with hereditary developmental colour agnosia. The aim of the current study was to explore genomic regions and candidate genes that potentially cause this trait in this family. For three family members with developmental colour agnosia and three unaffected family members CGH-array analysis and exome sequencing was performed, and linkage analysis was carried out using DominantMapper, resulting in the identification of 19 cosegregating chromosomal regions. Whole exome sequencing resulted in 11 rare coding variants present in all affected family members with developmental colour agnosia and absent in unaffected members. These variants affected genes that have been implicated in neural processes and functions (CACNA2D4, DDX25, GRINA, MYO15A) or that have an indirect link to brain function, development or disease (MAML2, STAU1, TMED3, RABEPK), and a remaining group lacking brain expression or involved in non-neural traits (DEPDC7, OR1J1, OR8D4). Although this is an explorative study, the small set of candidate genes that could serve as a starting point for unravelling mechanisms of higher level cognitive functions and cortical specialization, and disorders therein such as developmental colour agnosia.


Subject(s)
Agnosia , Humans , Agnosia/genetics , Brain , Color , Cytoskeletal Proteins , RNA-Binding Proteins , Vesicular Transport Proteins
7.
Mol Cancer ; 22(1): 129, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563568

ABSTRACT

BACKGROUND: This Phase 1 study evaluates the intra- and peritumoral administration by convection enhanced delivery (CED) of human recombinant Bone Morphogenetic Protein 4 (hrBMP4) - an inhibitory regulator of cancer stem cells (CSCs) - in recurrent glioblastoma. METHODS: In a 3 + 3 dose escalation design, over four to six days, fifteen recurrent glioblastoma patients received, by CED, one of five doses of hrBMP4 ranging from 0·5 to 18 mg. Patients were followed by periodic physical, neurological, blood testing, magnetic resonance imaging (MRI) and quality of life evaluations. The primary objective of this first-in-human study was to determine the safety, dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) of hrBMP4. Secondary objectives were to assess potential efficacy and systemic exposure to hrBMP4 upon intracerebral infusion. RESULTS: Intra- and peritumoral infusion of hrBMP4 was safe and well-tolerated. We observed no serious adverse events related to this drug. Neither MTD nor DLT were reached. Three patients had increased hrBMP4 serum levels at the end of infusion, which normalized within 4 weeks, without sign of toxicity. One patient showed partial response and two patients a complete (local) tumor response, which was maintained until the most recent follow-up, 57 and 30 months post-hrBMP4. Tumor growth was inhibited in areas permeated by hrBMP4. CONCLUSION: Local delivery of hrBMP4 in and around recurring glioblastoma is safe and well-tolerated. Three patients responded to the treatment. A complete response and long-term survival occurred in two of them. This warrants further clinical studies on this novel treatment targeting glioblastoma CSCs. TRIAL REGISTRATION: ClinicaTrials.gov identifier: NCT02869243.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Quality of Life , Bone Morphogenetic Protein 4/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Brain Neoplasms/pathology , Maximum Tolerated Dose
8.
EBioMedicine ; 93: 104655, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37327673

ABSTRACT

BACKGROUND: HFrEF is a heterogenous condition with high mortality. We used serial assessments of 4210 circulating proteins to identify distinct novel protein-based HFrEF subphenotypes and to investigate underlying dynamic biological mechanisms. Herewith we aimed to gain pathophysiological insights and fuel opportunities for personalised treatment. METHODS: In 382 patients, we performed trimonthly blood sampling during a median follow-up of 2.1 [IQR:1.1-2.6] years. We selected all baseline samples and two samples closest to the primary endpoint (PEP; composite of cardiovascular mortality, HF hospitalization, LVAD implantation, and heart transplantation) or censoring, and applied an aptamer-based multiplex proteomic approach. Using unsupervised machine learning methods, we derived clusters from 4210 repeatedly measured proteomic biomarkers. Sets of proteins that drove cluster allocation were analysed via an enrichment analysis. Differences in clinical characteristics and PEP occurrence were evaluated. FINDINGS: We identified four subphenotypes with different protein profiles, prognosis and clinical characteristics, including age (median [IQR] for subphenotypes 1-4, respectively:70 [64, 76], 68 [60, 79], 57 [47, 65], 59 [56, 66]years), EF (30 [26, 36], 26 [20, 38], 26 [22, 32], 33 [28, 37]%), and chronic renal failure (45%, 65%, 36%, 37%). Subphenotype allocation was driven by subsets of proteins associated with various biological functions, such as oxidative stress, inflammation and extracellular matrix organisation. Clinical characteristics of the subphenotypes were aligned with these associations. Subphenotypes 2 and 3 had the worst prognosis compared to subphenotype 1 (adjHR (95%CI):3.43 (1.76-6.69), and 2.88 (1.37-6.03), respectively). INTERPRETATION: Four circulating-protein based subphenotypes are present in HFrEF, which are driven by varying combinations of protein subsets, and have different clinical characteristics and prognosis. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01851538https://clinicaltrials.gov/ct2/show/NCT01851538. FUNDING: EU/EFPIA IMI2JU BigData@Heart grant n°116074, Jaap Schouten Foundation and Noordwest Academie.


Subject(s)
Heart Failure , Humans , Infant , Child, Preschool , Heart Failure/diagnosis , Heart Failure/therapy , Stroke Volume , Proteomics , Biomarkers , Prognosis
9.
Biol Sex Differ ; 14(1): 29, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37198662

ABSTRACT

BACKGROUND: Studies focusing on sex differences in circulating proteins in patients with heart failure with reduced ejection fraction (HFrEF) are scarce. Insight into sex-specific cardiovascular protein profiles and their associations with the risk of adverse outcomes may contribute to a better understanding of the pathophysiological processes involved in HFrEF. Moreover, it could provide a basis for the use of circulating protein measurements for prognostication in women and men, wherein the most relevant protein measurements are applied in each of the sexes. METHODS: In 382 patients with HFrEF, we performed tri-monthly blood sampling (median follow-up: 25 [13-31] months). We selected all baseline samples and two samples closest to the primary endpoint (PEP: composite of cardiovascular death, heart transplantation, left ventricular assist device implantation, and HF hospitalization) or censoring. We then applied an aptamer-based multiplex proteomic assay identifying 1105 proteins previously associated with cardiovascular disease. We used linear regression models and gene-enrichment analysis to study sex-based differences in baseline levels. We used time-dependent Cox models to study differences in the prognostic value of serially measured proteins. All models were adjusted for the MAGGIC HF mortality risk score and p-values for multiple testing. RESULTS: In 104 women and 278 men (mean age 62 and 64 years, respectively) cumulative PEP incidence at 30 months was 25% and 35%, respectively. At baseline, 55 (5%) out of the 1105 proteins were significantly different between women and men. The female protein profile was most strongly associated with extracellular matrix organization, while the male profile was dominated by regulation of cell death. The association of endothelin-1 (Pinteraction < 0.001) and somatostatin (Pinteraction = 0.040) with the PEP was modified by sex, independent of clinical characteristics. Endothelin-1 was more strongly associated with the PEP in men (HR 2.62 [95%CI, 1.98, 3.46], p < 0.001) compared to women (1.14 [1.01, 1.29], p = 0.036). Somatostatin was positively associated with the PEP in men (1.23 [1.10, 1.38], p < 0.001), but inversely associated in women (0.33 [0.12, 0.93], p = 0.036). CONCLUSION: Baseline cardiovascular protein levels differ between women and men. However, the predictive value of repeatedly measured circulating proteins does not seem to differ except for endothelin-1 and somatostatin.


Subject(s)
Heart Failure , Humans , Female , Male , Middle Aged , Ventricular Function, Left/physiology , Stroke Volume/physiology , Sex Characteristics , Endothelin-1 , Proteomics
10.
Hum Genet ; 142(3): 379-397, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36538041

ABSTRACT

CLEC16A is a membrane-associated C-type lectin protein that functions as a E3-ubiquitin ligase. CLEC16A regulates autophagy and mitophagy, and reportedly localizes to late endosomes. GWAS studies have associated CLEC16A SNPs to various auto-immune and neurological disorders, including multiple sclerosis and Parkinson disease. Studies in mouse models imply a role for CLEC16A in neurodegeneration. We identified bi-allelic CLEC16A truncating variants in siblings from unrelated families presenting with a severe neurodevelopmental disorder including microcephaly, brain atrophy, corpus callosum dysgenesis, and growth retardation. To understand the function of CLEC16A in neurodevelopment we used in vitro models and zebrafish embryos. We observed CLEC16A localization to early endosomes in HEK293T cells. Mass spectrometry of human CLEC16A showed interaction with endosomal retromer complex subunits and the endosomal ubiquitin ligase TRIM27. Expression of the human variant leading to C-terminal truncated CLEC16A, abolishes both its endosomal localization and interaction with TRIM27, suggesting a loss-of-function effect. CLEC16A knockdown increased TRIM27 adhesion to early endosomes and abnormal accumulation of endosomal F-actin, a sign of disrupted vesicle sorting. Mutagenesis of clec16a by CRISPR-Cas9 in zebrafish embryos resulted in accumulated acidic/phagolysosome compartments, in neurons and microglia, and dysregulated mitophagy. The autophagocytic phenotype was rescued by wild-type human CLEC16A but not the C-terminal truncated CLEC16A. Our results demonstrate that CLEC16A closely interacts with retromer components and regulates endosomal fate by fine-tuning levels of TRIM27 and polymerized F-actin on the endosome surface. Dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration, but it also causes accumulation of autophagosomes and unhealthy mitochondria during brain development.


Subject(s)
Actins , Zebrafish , Animals , Humans , DNA-Binding Proteins/metabolism , Endosomes/genetics , Endosomes/metabolism , HEK293 Cells , Lectins, C-Type/genetics , Lectins, C-Type/chemistry , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Nuclear Proteins/metabolism , Protein Transport , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitins/metabolism , Zebrafish/genetics , Zebrafish/metabolism
11.
J Allergy Clin Immunol ; 151(2): 565-571.e9, 2023 02.
Article in English | MEDLINE | ID: mdl-36216080

ABSTRACT

BACKGROUND: The signal transducer and activator of transcription 6 (STAT6) signaling pathway plays a central role in allergic inflammation. To date, however, there have been no descriptions of STAT6 gain-of-function variants leading to allergies in humans. OBJECTIVE: We report a STAT6 gain-of-function variant associated with early-onset multiorgan allergies in a family with 3 affected members. METHODS: Exome sequencing and immunophenotyping of T-helper cell subsets were conducted. The function of the STAT6 protein was analyzed by Western blot, immunofluorescence, electrophoretic mobility shift assays, and luciferase assays. Gastric organoids obtained from the index patient were used to study downstream effector cytokines. RESULTS: We identified a heterozygous missense variant (c.1129G>A;p.Glu377Lys) in the DNA binding domain of STAT6 that was de novo in the index patient's father and was inherited by 2 of his 3 children. Severe atopic dermatitis and food allergy were key presentations. Clinical heterogeneity was observed among the affected individuals. Higher levels of peripheral blood TH2 lymphocytes were detected. The mutant STAT6 displayed a strong preference for nuclear localization, increased DNA binding affinity, and spontaneous transcriptional activity. Moreover, gastric organoids showed constitutive activation of STAT6 downstream signaling molecules. CONCLUSIONS: A germline STAT6 gain-of-function variant results in spontaneous activation of the STAT6 signaling pathway and is associated with an early-onset and severe allergic phenotype in humans. These observations enhance our knowledge of the molecular mechanisms underlying allergic diseases and will potentially contribute to novel therapeutic interventions.


Subject(s)
Food Hypersensitivity , Gain of Function Mutation , Child , Humans , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Cytokines/metabolism , DNA
14.
Chem Biol Interact ; 365: 110050, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35917947

ABSTRACT

Asthma, COPD, COVID-19, EGPA, Lung cancer, and Pneumonia are major chronic respiratory diseases (or CRDs) affecting millions worldwide and account for substantial morbidity and mortality. These CRDs are irreversible diseases that affect different parts of the respiratory system, imposing a considerable burden on different socio-economic classes. All these CRDs have been linked to increased eosinophils in the lungs. Eosinophils are essential immune mediators that contribute to tissue homeostasis and the pathophysiology of various diseases. Interestingly, elevated eosinophil level is associated with cellular processes that regulate airway hyperresponsiveness, airway remodeling, mucus hypersecretion, and inflammation in the lung. Therefore, eosinophil is considered the therapeutic target in eosinophil-mediated lung diseases. Although, conventional medicines like antibiotics, anti-inflammatory drugs, and bronchodilators are available to prevent CRDs. But the development of resistance to these therapeutic agents after long-term usage remains a challenge. However, progressive development in nanotechnology has unveiled the targeted nanocarrier approach that can significantly improve the pharmacokinetics of a therapeutic drug. The potential of the nanocarrier system can be specifically targeted on eosinophils and their associated components to obtain promising results in the pharmacotherapy of CRDs. This review intends to provide knowledge about eosinophils and their role in CRDs. Moreover, it also discusses nanocarrier drug delivery systems for the targeted treatment of CRDs.


Subject(s)
Asthma , COVID-19 Drug Treatment , Asthma/drug therapy , Eosinophils , Humans , Lung , Nanotechnology
15.
Genet Med ; 24(10): 2051-2064, 2022 10.
Article in English | MEDLINE | ID: mdl-35833929

ABSTRACT

PURPOSE: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Repressor Proteins , Tooth Abnormalities , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/etiology , Bone Diseases, Developmental/genetics , Chromosome Deletion , Facies , Humans , Intellectual Disability/genetics , Mutation, Missense , Phenotype , Proteasome Endopeptidase Complex/genetics , Repressor Proteins/genetics , Tooth Abnormalities/diagnosis , Transcription Factors/genetics
16.
Ann Rheum Dis ; 81(10): 1453-1464, 2022 10.
Article in English | MEDLINE | ID: mdl-35868845

ABSTRACT

OBJECTIVES: To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS: This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS: The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION: ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.


Subject(s)
Hereditary Autoinflammatory Diseases , NF-kappa B , Protein Kinases/genetics , Amyloidosis , Animals , Cohort Studies , Gain of Function Mutation , Hereditary Autoinflammatory Diseases/genetics , Humans , Inflammation/genetics , Mice , Mutation , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Kinases/metabolism , Quality of Life , Serum Amyloid A Protein , Syndrome , Tumor Necrosis Factor Inhibitors
17.
Sci Rep ; 12(1): 11106, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773312

ABSTRACT

Abrupt onset of severe neuropsychiatric symptoms including obsessive-compulsive disorder, tics, anxiety, mood swings, irritability, and restricted eating is described in children with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS). Symptom onset is often temporally associated with infections, suggesting an underlying autoimmune/autoinflammatory etiology, although direct evidence is often lacking. The pathological mechanisms are likely heterogeneous, but we hypothesize convergence on one or more biological pathways. Consequently, we conducted whole exome sequencing (WES) on a U.S. cohort of 386 cases, and whole genome sequencing (WGS) on ten cases from the European Union who were selected because of severe PANS. We focused on identifying potentially deleterious genetic variants that were de novo or ultra-rare (MAF) < 0.001. Candidate mutations were found in 11 genes (PPM1D, SGCE, PLCG2, NLRC4, CACNA1B, SHANK3, CHK2, GRIN2A, RAG1, GABRG2, and SYNGAP1) in 21 cases, which included two or more unrelated subjects with ultra-rare variants in four genes. These genes converge into two broad functional categories. One regulates peripheral immune responses and microglia (PPM1D, CHK2, NLRC4, RAG1, PLCG2). The other is expressed primarily at neuronal synapses (SHANK3, SYNGAP1, GRIN2A, GABRG2, CACNA1B, SGCE). Mutations in these neuronal genes are also described in autism spectrum disorder and myoclonus-dystonia. In fact, 12/21 cases developed PANS superimposed on a preexisting neurodevelopmental disorder. Genes in both categories are also highly expressed in the enteric nervous system and the choroid plexus. Thus, genetic variation in PANS candidate genes may function by disrupting peripheral and central immune functions, neurotransmission, and/or the blood-CSF/brain barriers following stressors such as infection.


Subject(s)
Autism Spectrum Disorder , Autoimmune Diseases , Obsessive-Compulsive Disorder , Streptococcal Infections , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/genetics , Autoimmune Diseases/diagnosis , Child , Exome/genetics , Homeodomain Proteins , Humans , Obsessive-Compulsive Disorder/diagnosis , Streptococcal Infections/complications , Exome Sequencing , Whole Genome Sequencing
18.
Commun Biol ; 5(1): 338, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35396392

ABSTRACT

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) have been identified in bacteria, archaea and mitochondria of plants, but not in eukaryotes. Here, we report the discovery of 12,572 putative CRISPRs randomly distributed across the human chromosomes, which we termed hCRISPRs. By using available transcriptome datasets, we demonstrate that hCRISPRs are distinctively expressed as small non-coding RNAs (sncRNAs) in cell lines and human tissues. Moreover, expression patterns thereof enabled us to distinguish normal from malignant tissues. In prostate cancer, we confirmed the differential hCRISPR expression between normal adjacent and malignant primary prostate tissue by RT-qPCR and demonstrate that the SHERLOCK and DETECTR dipstick tools are suitable to detect these sncRNAs. We anticipate that the discovery of CRISPRs in the human genome can be further exploited for diagnostic purposes in cancer and other medical conditions, which certainly will lead to the development of point-of-care tests based on the differential expression of the hCRISPRs.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , RNA, Small Untranslated , Archaea/genetics , Bacteria/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Human , Humans , Male
19.
Pharmacol Res ; 178: 106187, 2022 04.
Article in English | MEDLINE | ID: mdl-35331864

ABSTRACT

Economic evaluation is an integral component of informed public health decision-making in personalized medicine. However, performing economic evaluation assessments often requires specialized knowledge, expertise, and significant resources. To this end, developing generic models can significantly assist towards providing the necessary evidence for the cost-effectiveness of genome-guided therapeutic interventions, compared to the traditional drug treatment modalities. Here, we report a generic cost-utility analysis model, developed in R, which encompasses essential economic evaluation steps. Specifically, critical steps towards a comprehensive deterministic and probabilistic sensitivity analysis were incorporated in our model, while also providing an easy-to-use graphical user interface, which allows even non-experts in the field to produce a fully comprehensive cost-utility analysis report. To further demonstrate the model's reproducibility, two sets of data were assessed, one stemming from in-house clinical data and one based on previously published data. By implementing the generic model presented herein, we show that the model produces results in complete concordance with the traditionally performed cost-utility analysis for both datasets. Overall, this work demonstrates the potential of generic models to provide useful economic evidence for personalized medicine interventions.


Subject(s)
Reproducibility of Results , Cost-Benefit Analysis
20.
J Allergy Clin Immunol ; 150(1): 146-156.e10, 2022 07.
Article in English | MEDLINE | ID: mdl-35026208

ABSTRACT

BACKGROUND: Indolent systemic mastocytosis (ISM) is characterized by pathologic accumulation of mast cells. The mechanism behind its phenotypic heterogeneity is not well understood. Interaction of mast cells with other immune cells might cause systemic inflammation and thereby associated symptoms. OBJECTIVE: We investigated peripheral leukocyte compartments and serum immune proteome in ISM. METHODS: Peripheral blood leukocyte phenotyping using flow cytometry in a cohort of 18 adults with ISM and 12 healthy controls. Targeted proteomics was performed to measure 169 proteins associated with inflammation on serum of another 20 ISM patients and 20 healthy controls. RESULTS: Proportions of plasmacytoid dendritic cells and monocytes were significantly decreased while TH2 cells were increased in peripheral blood of ISM patients. Furthermore, a shift from naive to memory T cells was observed. Hierarchical clustering of the serum proteome revealed 2 distinct subgroups within ISM patients. In subgroup A (n = 8), 62 proteins were significantly overexpressed, whereas those of subgroup B (n = 12) were comparable to healthy controls. Patients in subgroup A displayed upregulated signaling pathways downstream of Toll-like receptor 4, TNF-α, and IFN-γ. Fatigue was more often present in subgroup A compared to B (75% vs 33% respectively, P = .06). CONCLUSIONS: Altered distribution of leukocyte subsets and a proinflammatory proteome were observed in subsequent 2 cohorts of ISM patients. We hypothesize that neoplastic mast cells recruit and activate plasmacytoid dendritic cells, monocytes, and T cells, leading to a vicious cycle of inflammation.


Subject(s)
Mastocytosis, Systemic , Mastocytosis , Adult , Humans , Inflammation/complications , Leukocytes/pathology , Mastocytosis/diagnosis , Mastocytosis, Systemic/diagnosis , Proteome
SELECTION OF CITATIONS
SEARCH DETAIL
...